Iterative Decoding Performance Bounds for LDPC Codes on Noisy Channels
نویسندگان
چکیده
The asymptotic iterative decoding performances of low-density parity-check (LDPC) codes using min-sum (MS) and sum-product (SP) decoding algorithms on memoryless binary-input output-symmetric (MBIOS) channels are analyzed in this paper. For MS decoding, the analysis is done by upper bounding the bit error probability of the root bit of a tree code by the sequence error probability of a subcode of the tree code assuming the transmission of the allzero codeword. The result is a recursive upper bound on the bit error probability after each iteration. For SP decoding, we derive a tighter recursively determined upper bound on the bit error probability by tracking the evolution of the Bhattacharryya parameters associated with the decoding messages after each iteration. This recursive upper bound recovers the density evolution equation of LDPC codes on the binary erasure channel (BEC) with inequalities satisfied with equalities. A significant implication of this result is that the performance of LDPC codes under SP decoding on the BEC is a lower bound of the performance on all MBIOS channels with the same Bhattacharryya parameter. All results hold for the more general multi-edge type LDPC codes.
منابع مشابه
On Achievable Rates and Complexity of LDPC Codes for Parallel Channels with Application to Puncturing
This paper considers the achievable rates and decoding complexity of low-density parity-check (LDPC) codes over statistically independent parallel channels. The paper starts with the derivation of bounds on the conditional entropy of the transmitted codeword given the received sequence at the output of the parallel channels; the component channels are considered to be memoryless, binary-input, ...
متن کاملSearch Based Weighted Multi-Bit Flipping Algorithm for High-Performance Low-Complexity Decoding of LDPC Codes
In this paper, two new hybrid algorithms are proposed for decoding Low Density Parity Check (LDPC) codes. Original version of the proposed algorithms named Search Based Weighted Multi Bit Flipping (SWMBF). The main idea of these algorithms is flipping variable multi bits in each iteration, change in which leads to the syndrome vector with least hamming weight. To achieve this, the proposed algo...
متن کاملSearch Based Weighted Multi-Bit Flipping Algorithm for High-Performance Low-Complexity Decoding of LDPC Codes
In this paper, two new hybrid algorithms are proposed for decoding Low Density Parity Check (LDPC) codes. Original version of the proposed algorithms named Search Based Weighted Multi Bit Flipping (SWMBF). The main idea of these algorithms is flipping variable multi bits in each iteration, change in which leads to the syndrome vector with least hamming weight. To achieve this, the proposed algo...
متن کاملGraph-based Codes and Iterative Decoding
The field of error correcting codes was revolutionized by the introduction of turbo codes [7] in 1993. These codes demonstrated dramatic performance improvements over any previously known codes, with significantly lower complexity. Since then, much progress has been made towards understanding the performance of these codes, as well as in using this understanding to design even better codes. Thi...
متن کاملPerformance versus Complexity Per Iteration for Low-Density Parity-Check Codes: An Information-Theoretic Approach
The paper is focused on the tradeoff between performance and decoding complexity per iteration for LDPC codes in terms of their gap (in rate) to capacity. The study of this tradeoff is done via information-theoretic bounds which also enable to get an indication on the sub-optimality of message-passing iterative decoding algorithms (as compared to optimal ML decoding). The bounds are generalized...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/cs/0607020 شماره
صفحات -
تاریخ انتشار 2006